001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.util.concurrent; 016 017import com.google.common.annotations.Beta; 018import com.google.common.annotations.GwtIncompatible; 019import com.google.common.annotations.VisibleForTesting; 020import com.google.common.base.MoreObjects; 021import com.google.common.base.Preconditions; 022import com.google.common.base.Supplier; 023import com.google.common.collect.ImmutableList; 024import com.google.common.collect.Iterables; 025import com.google.common.collect.MapMaker; 026import com.google.common.math.IntMath; 027import com.google.common.primitives.Ints; 028import java.lang.ref.Reference; 029import java.lang.ref.ReferenceQueue; 030import java.lang.ref.WeakReference; 031import java.math.RoundingMode; 032import java.util.Arrays; 033import java.util.Collections; 034import java.util.List; 035import java.util.concurrent.ConcurrentMap; 036import java.util.concurrent.Semaphore; 037import java.util.concurrent.atomic.AtomicReferenceArray; 038import java.util.concurrent.locks.Condition; 039import java.util.concurrent.locks.Lock; 040import java.util.concurrent.locks.ReadWriteLock; 041import java.util.concurrent.locks.ReentrantLock; 042import java.util.concurrent.locks.ReentrantReadWriteLock; 043 044/** 045 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping similar 046 * to that of {@code ConcurrentHashMap} in a reusable form, and extends it for semaphores and 047 * read-write locks. Conceptually, lock striping is the technique of dividing a lock into many 048 * <i>stripes</i>, increasing the granularity of a single lock and allowing independent operations 049 * to lock different stripes and proceed concurrently, instead of creating contention for a single 050 * lock. 051 * 052 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore), 053 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} (assuming 054 * {@link Object#hashCode()} is correctly implemented for the keys). Note that if {@code key1} is 055 * <strong>not</strong> equal to {@code key2}, it is <strong>not</strong> guaranteed that {@code 056 * striped.get(key1) != striped.get(key2)}; the elements might nevertheless be mapped to the same 057 * lock. The lower the number of stripes, the higher the probability of this happening. 058 * 059 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>}, and 060 * {@code Striped<ReadWriteLock>}. For each type, two implementations are offered: {@linkplain 061 * #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak} {@code Striped<Lock>}, {@linkplain 062 * #semaphore(int, int) strong} and {@linkplain #lazyWeakSemaphore(int, int) weak} {@code 063 * Striped<Semaphore>}, and {@linkplain #readWriteLock(int) strong} and {@linkplain 064 * #lazyWeakReadWriteLock(int) weak} {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all 065 * stripes (locks/semaphores) are initialized eagerly, and are not reclaimed unless {@code Striped} 066 * itself is reclaimable. <i>Weak</i> means that locks/semaphores are created lazily, and they are 067 * allowed to be reclaimed if nobody is holding on to them. This is useful, for example, if one 068 * wants to create a {@code Striped<Lock>} of many locks, but worries that in most cases only a 069 * small portion of these would be in use. 070 * 071 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K} 072 * represents the task. This maximizes concurrency by having each unique key mapped to a unique 073 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock for 074 * all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of choosing 075 * either of these extremes, {@code Striped} allows the user to trade between required concurrency 076 * and memory footprint. For example, if a set of tasks are CPU-bound, one could easily create a 077 * very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes, instead of 078 * possibly thousands of locks which could be created in a {@code Map<K, Lock>} structure. 079 * 080 * @author Dimitris Andreou 081 * @since 13.0 082 */ 083@Beta 084@GwtIncompatible 085public abstract class Striped<L> { 086 /** 087 * If there are at least this many stripes, we assume the memory usage of a ConcurrentMap will be 088 * smaller than a large array. (This assumes that in the lazy case, most stripes are unused. As 089 * always, if many stripes are in use, a non-lazy striped makes more sense.) 090 */ 091 private static final int LARGE_LAZY_CUTOFF = 1024; 092 093 private Striped() {} 094 095 /** 096 * Returns the stripe that corresponds to the passed key. It is always guaranteed that if {@code 097 * key1.equals(key2)}, then {@code get(key1) == get(key2)}. 098 * 099 * @param key an arbitrary, non-null key 100 * @return the stripe that the passed key corresponds to 101 */ 102 public abstract L get(Object key); 103 104 /** 105 * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to {@code size()}, 106 * exclusively. 107 * 108 * @param index the index of the stripe to return; must be in {@code [0...size())} 109 * @return the stripe at the specified index 110 */ 111 public abstract L getAt(int index); 112 113 /** 114 * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key). 115 */ 116 abstract int indexFor(Object key); 117 118 /** Returns the total number of stripes in this instance. */ 119 public abstract int size(); 120 121 /** 122 * Returns the stripes that correspond to the passed objects, in ascending (as per {@link 123 * #getAt(int)}) order. Thus, threads that use the stripes in the order returned by this method 124 * are guaranteed to not deadlock each other. 125 * 126 * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and {@code 127 * bulkGet(keys)} with a relative large number of keys can cause an excessive number of shared 128 * stripes (much like the birthday paradox, where much fewer than anticipated birthdays are needed 129 * for a pair of them to match). Please consider carefully the implications of the number of 130 * stripes, the intended concurrency level, and the typical number of keys used in a {@code 131 * bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls in 132 * Bins model</a> for mathematical formulas that can be used to estimate the probability of 133 * collisions. 134 * 135 * @param keys arbitrary non-null keys 136 * @return the stripes corresponding to the objects (one per each object, derived by delegating to 137 * {@link #get(Object)}; may contain duplicates), in an increasing index order. 138 */ 139 public Iterable<L> bulkGet(Iterable<?> keys) { 140 // Initially using the array to store the keys, then reusing it to store the respective L's 141 final Object[] array = Iterables.toArray(keys, Object.class); 142 if (array.length == 0) { 143 return ImmutableList.of(); 144 } 145 int[] stripes = new int[array.length]; 146 for (int i = 0; i < array.length; i++) { 147 stripes[i] = indexFor(array[i]); 148 } 149 Arrays.sort(stripes); 150 // optimize for runs of identical stripes 151 int previousStripe = stripes[0]; 152 array[0] = getAt(previousStripe); 153 for (int i = 1; i < array.length; i++) { 154 int currentStripe = stripes[i]; 155 if (currentStripe == previousStripe) { 156 array[i] = array[i - 1]; 157 } else { 158 array[i] = getAt(currentStripe); 159 previousStripe = currentStripe; 160 } 161 } 162 /* 163 * Note that the returned Iterable holds references to the returned stripes, to avoid 164 * error-prone code like: 165 * 166 * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)' 167 * Iterable<Lock> locks = stripedLock.bulkGet(keys); 168 * for (Lock lock : locks) { 169 * lock.lock(); 170 * } 171 * operation(); 172 * for (Lock lock : locks) { 173 * lock.unlock(); 174 * } 175 * 176 * If we only held the int[] stripes, translating it on the fly to L's, the original locks might 177 * be garbage collected after locking them, ending up in a huge mess. 178 */ 179 @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's 180 List<L> asList = (List<L>) Arrays.asList(array); 181 return Collections.unmodifiableList(asList); 182 } 183 184 // Static factories 185 186 /** 187 * Creates a {@code Striped<L>} with eagerly initialized, strongly referenced locks. Every lock 188 * is obtained from the passed supplier. 189 * 190 * @param stripes the minimum number of stripes (locks) required 191 * @param supplier a {@code Supplier<L>} object to obtain locks from 192 * @return a new {@code Striped<L>} 193 */ 194 static <L> Striped<L> custom(int stripes, Supplier<L> supplier) { 195 return new CompactStriped<>(stripes, supplier); 196 } 197 198 /** 199 * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks. Every lock 200 * is reentrant. 201 * 202 * @param stripes the minimum number of stripes (locks) required 203 * @return a new {@code Striped<Lock>} 204 */ 205 public static Striped<Lock> lock(int stripes) { 206 return custom(stripes, new Supplier<Lock>() { 207 @Override 208 public Lock get() { 209 return new PaddedLock(); 210 } 211 }); 212 } 213 214 /** 215 * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks. Every lock is 216 * reentrant. 217 * 218 * @param stripes the minimum number of stripes (locks) required 219 * @return a new {@code Striped<Lock>} 220 */ 221 public static Striped<Lock> lazyWeakLock(int stripes) { 222 return lazy( 223 stripes, 224 new Supplier<Lock>() { 225 @Override 226 public Lock get() { 227 return new ReentrantLock(false); 228 } 229 }); 230 } 231 232 private static <L> Striped<L> lazy(int stripes, Supplier<L> supplier) { 233 return stripes < LARGE_LAZY_CUTOFF 234 ? new SmallLazyStriped<L>(stripes, supplier) 235 : new LargeLazyStriped<L>(stripes, supplier); 236 } 237 238 /** 239 * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores, 240 * with the specified number of permits. 241 * 242 * @param stripes the minimum number of stripes (semaphores) required 243 * @param permits the number of permits in each semaphore 244 * @return a new {@code Striped<Semaphore>} 245 */ 246 public static Striped<Semaphore> semaphore(int stripes, final int permits) { 247 return custom( 248 stripes, 249 new Supplier<Semaphore>() { 250 @Override 251 public Semaphore get() { 252 return new PaddedSemaphore(permits); 253 } 254 }); 255 } 256 257 /** 258 * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores, 259 * with the specified number of permits. 260 * 261 * @param stripes the minimum number of stripes (semaphores) required 262 * @param permits the number of permits in each semaphore 263 * @return a new {@code Striped<Semaphore>} 264 */ 265 public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) { 266 return lazy( 267 stripes, 268 new Supplier<Semaphore>() { 269 @Override 270 public Semaphore get() { 271 return new Semaphore(permits, false); 272 } 273 }); 274 } 275 276 /** 277 * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced 278 * read-write locks. Every lock is reentrant. 279 * 280 * @param stripes the minimum number of stripes (locks) required 281 * @return a new {@code Striped<ReadWriteLock>} 282 */ 283 public static Striped<ReadWriteLock> readWriteLock(int stripes) { 284 return custom(stripes, READ_WRITE_LOCK_SUPPLIER); 285 } 286 287 /** 288 * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced read-write 289 * locks. Every lock is reentrant. 290 * 291 * @param stripes the minimum number of stripes (locks) required 292 * @return a new {@code Striped<ReadWriteLock>} 293 */ 294 public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) { 295 return lazy(stripes, WEAK_SAFE_READ_WRITE_LOCK_SUPPLIER); 296 } 297 298 private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER = 299 new Supplier<ReadWriteLock>() { 300 @Override 301 public ReadWriteLock get() { 302 return new ReentrantReadWriteLock(); 303 } 304 }; 305 306 private static final Supplier<ReadWriteLock> WEAK_SAFE_READ_WRITE_LOCK_SUPPLIER = 307 new Supplier<ReadWriteLock>() { 308 @Override 309 public ReadWriteLock get() { 310 return new WeakSafeReadWriteLock(); 311 } 312 }; 313 314 /** 315 * ReadWriteLock implementation whose read and write locks retain a reference back to this lock. 316 * Otherwise, a reference to just the read lock or just the write lock would not suffice to ensure 317 * the {@code ReadWriteLock} is retained. 318 */ 319 private static final class WeakSafeReadWriteLock implements ReadWriteLock { 320 private final ReadWriteLock delegate; 321 322 WeakSafeReadWriteLock() { 323 this.delegate = new ReentrantReadWriteLock(); 324 } 325 326 @Override 327 public Lock readLock() { 328 return new WeakSafeLock(delegate.readLock(), this); 329 } 330 331 @Override 332 public Lock writeLock() { 333 return new WeakSafeLock(delegate.writeLock(), this); 334 } 335 } 336 337 /** Lock object that ensures a strong reference is retained to a specified object. */ 338 private static final class WeakSafeLock extends ForwardingLock { 339 private final Lock delegate; 340 341 @SuppressWarnings("unused") 342 private final WeakSafeReadWriteLock strongReference; 343 344 WeakSafeLock(Lock delegate, WeakSafeReadWriteLock strongReference) { 345 this.delegate = delegate; 346 this.strongReference = strongReference; 347 } 348 349 @Override 350 Lock delegate() { 351 return delegate; 352 } 353 354 @Override 355 public Condition newCondition() { 356 return new WeakSafeCondition(delegate.newCondition(), strongReference); 357 } 358 } 359 360 /** Condition object that ensures a strong reference is retained to a specified object. */ 361 private static final class WeakSafeCondition extends ForwardingCondition { 362 private final Condition delegate; 363 364 @SuppressWarnings("unused") 365 private final WeakSafeReadWriteLock strongReference; 366 367 WeakSafeCondition(Condition delegate, WeakSafeReadWriteLock strongReference) { 368 this.delegate = delegate; 369 this.strongReference = strongReference; 370 } 371 372 @Override 373 Condition delegate() { 374 return delegate; 375 } 376 } 377 378 private abstract static class PowerOfTwoStriped<L> extends Striped<L> { 379 /** Capacity (power of two) minus one, for fast mod evaluation */ 380 final int mask; 381 382 PowerOfTwoStriped(int stripes) { 383 Preconditions.checkArgument(stripes > 0, "Stripes must be positive"); 384 this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1; 385 } 386 387 @Override 388 final int indexFor(Object key) { 389 int hash = smear(key.hashCode()); 390 return hash & mask; 391 } 392 393 @Override 394 public final L get(Object key) { 395 return getAt(indexFor(key)); 396 } 397 } 398 399 /** 400 * Implementation of Striped where 2^k stripes are represented as an array of the same length, 401 * eagerly initialized. 402 */ 403 private static class CompactStriped<L> extends PowerOfTwoStriped<L> { 404 /** Size is a power of two. */ 405 private final Object[] array; 406 407 private CompactStriped(int stripes, Supplier<L> supplier) { 408 super(stripes); 409 Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)"); 410 411 this.array = new Object[mask + 1]; 412 for (int i = 0; i < array.length; i++) { 413 array[i] = supplier.get(); 414 } 415 } 416 417 @SuppressWarnings("unchecked") // we only put L's in the array 418 @Override 419 public L getAt(int index) { 420 return (L) array[index]; 421 } 422 423 @Override 424 public int size() { 425 return array.length; 426 } 427 } 428 429 /** 430 * Implementation of Striped where up to 2^k stripes can be represented, using an 431 * AtomicReferenceArray of size 2^k. To map a user key into a stripe, we take a k-bit slice of the 432 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 433 */ 434 @VisibleForTesting 435 static class SmallLazyStriped<L> extends PowerOfTwoStriped<L> { 436 final AtomicReferenceArray<ArrayReference<? extends L>> locks; 437 final Supplier<L> supplier; 438 final int size; 439 final ReferenceQueue<L> queue = new ReferenceQueue<L>(); 440 441 SmallLazyStriped(int stripes, Supplier<L> supplier) { 442 super(stripes); 443 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 444 this.locks = new AtomicReferenceArray<>(size); 445 this.supplier = supplier; 446 } 447 448 @Override 449 public L getAt(int index) { 450 if (size != Integer.MAX_VALUE) { 451 Preconditions.checkElementIndex(index, size()); 452 } // else no check necessary, all index values are valid 453 ArrayReference<? extends L> existingRef = locks.get(index); 454 L existing = existingRef == null ? null : existingRef.get(); 455 if (existing != null) { 456 return existing; 457 } 458 L created = supplier.get(); 459 ArrayReference<L> newRef = new ArrayReference<L>(created, index, queue); 460 while (!locks.compareAndSet(index, existingRef, newRef)) { 461 // we raced, we need to re-read and try again 462 existingRef = locks.get(index); 463 existing = existingRef == null ? null : existingRef.get(); 464 if (existing != null) { 465 return existing; 466 } 467 } 468 drainQueue(); 469 return created; 470 } 471 472 // N.B. Draining the queue is only necessary to ensure that we don't accumulate empty references 473 // in the array. We could skip this if we decide we don't care about holding on to Reference 474 // objects indefinitely. 475 private void drainQueue() { 476 Reference<? extends L> ref; 477 while ((ref = queue.poll()) != null) { 478 // We only ever register ArrayReferences with the queue so this is always safe. 479 ArrayReference<? extends L> arrayRef = (ArrayReference<? extends L>) ref; 480 // Try to clear out the array slot, n.b. if we fail that is fine, in either case the 481 // arrayRef will be out of the array after this step. 482 locks.compareAndSet(arrayRef.index, arrayRef, null); 483 } 484 } 485 486 @Override 487 public int size() { 488 return size; 489 } 490 491 private static final class ArrayReference<L> extends WeakReference<L> { 492 final int index; 493 494 ArrayReference(L referent, int index, ReferenceQueue<L> queue) { 495 super(referent, queue); 496 this.index = index; 497 } 498 } 499 } 500 501 /** 502 * Implementation of Striped where up to 2^k stripes can be represented, using a ConcurrentMap 503 * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the 504 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 505 */ 506 @VisibleForTesting 507 static class LargeLazyStriped<L> extends PowerOfTwoStriped<L> { 508 final ConcurrentMap<Integer, L> locks; 509 final Supplier<L> supplier; 510 final int size; 511 512 LargeLazyStriped(int stripes, Supplier<L> supplier) { 513 super(stripes); 514 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 515 this.supplier = supplier; 516 this.locks = new MapMaker().weakValues().makeMap(); 517 } 518 519 @Override 520 public L getAt(int index) { 521 if (size != Integer.MAX_VALUE) { 522 Preconditions.checkElementIndex(index, size()); 523 } // else no check necessary, all index values are valid 524 L existing = locks.get(index); 525 if (existing != null) { 526 return existing; 527 } 528 L created = supplier.get(); 529 existing = locks.putIfAbsent(index, created); 530 return MoreObjects.firstNonNull(existing, created); 531 } 532 533 @Override 534 public int size() { 535 return size; 536 } 537 } 538 539 /** A bit mask were all bits are set. */ 540 private static final int ALL_SET = ~0; 541 542 private static int ceilToPowerOfTwo(int x) { 543 return 1 << IntMath.log2(x, RoundingMode.CEILING); 544 } 545 546 /* 547 * This method was written by Doug Lea with assistance from members of JCP JSR-166 Expert Group 548 * and released to the public domain, as explained at 549 * http://creativecommons.org/licenses/publicdomain 550 * 551 * As of 2010/06/11, this method is identical to the (package private) hash method in OpenJDK 7's 552 * java.util.HashMap class. 553 */ 554 // Copied from java/com/google/common/collect/Hashing.java 555 private static int smear(int hashCode) { 556 hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12); 557 return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4); 558 } 559 560 private static class PaddedLock extends ReentrantLock { 561 /* 562 * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add a fourth 563 * long here, to minimize chance of interference between consecutive locks, but I couldn't 564 * observe any benefit from that. 565 */ 566 long unused1; 567 long unused2; 568 long unused3; 569 570 PaddedLock() { 571 super(false); 572 } 573 } 574 575 private static class PaddedSemaphore extends Semaphore { 576 // See PaddedReentrantLock comment 577 long unused1; 578 long unused2; 579 long unused3; 580 581 PaddedSemaphore(int permits) { 582 super(permits, false); 583 } 584 } 585}